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Motivation
» We want to identify distinct, “high-quality”, local minimizers of
minimize f(x)

I<x<u
x e R"

» High-quality can be measured by more than the objective.
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Motivation

v

We want to identify distinct, “high-quality”, local minimizers of

minimize f(x)
I<x<u
x € R"

v

High-quality can be measured by more than the objective.

v

Derivatives of f may or may not be available.

v

The simulation f is likely using parallel resources, but it does not
utilize the entire machine.
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Why concurrency? Tiled QR example
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Global optimization is difficult

Theorem (T6rn and Zilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on
a domain D if and only if the algorithm generates iterates that are
dense in D.
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Global optimization is difficult

Theorem (T6rn and Zilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on
a domain D if and only if the algorithm generates iterates that are
dense in D.

» Either assume additional properties about the problem

» convex f

separable f

finite domain D

concurrent evaluations of f

vyYyy

» Or possibly wait a long time (or forever)

The theory can be more than merely checking that a method generates
iterates which are dense in the domain.

4 of 25



Multistart Methods

Given some local optimization routine L:

Algorithm 1: General Multistart

for k=1,2,... do
Evaluate f at N points drawn from D

Start £ at some set (possibly empty) of previously evaluated points
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Multistart Methods

Given some local optimization routine L:

Algorithm 1: General Multistart

for k=1,2,... do
Evaluate f at N points drawn from D

Start £ at some set (possibly empty) of previously evaluated points

» Get to use problem specific local optimization routines.

» Possibly multiple levels of parallelism (objective, local method, global
method); £ may involve many sequential evaluations of f...

» Which points should start runs?

» If resources are limited, how should points from each run receive
priority?

> Ideally, only one run is started for each minima.
» Exploring by sampling. Refining with L.



Multi-Level Single Linkage

Given some local optimization routine L:

Algorithm 2: MLSL

for k=1,2,... do
Sample f at N random points drawn uniformly from D

Start £ at any sample point x:

» that has yet to start a run
» Bx : |lx — x| < rk and f(x;) < f(x)

[Rinnooy Kan and Timmer, Mathematical Programming, 39(1):57—-78, 1987]



Multi-Level Single Linkage

Given some local optimization routine L:

Algorithm 2: MLSL

for k=1,2,... do
Sample f at N random points drawn uniformly from D

Start £ at any sample point x:

» that has yet to start a run
» Bx : |lx — x| < rk and f(x;) < f(x)

[Rinnooy Kan and Timmer, Mathematical Programming, 39(1):57—-78, 1987]

» Doesn’t naturally translate when evaluations of 7 are limited

> Ignores some points when deciding where to start £



Multi-Level Single Linkage
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Multi-Level Single Linkage
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Multi-Level Single Linkage

k = 3; r; = 0.53603;
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Multi-Level Single Linkage
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Multi-Level Single Linkage
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Multi-Level Single Linkage
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Multi-Level Single Linkage
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Multi-Level Single Linkage

k = 20; r, = 0.27073;
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Multi-Level Single Linkage

k = 22; r;, = 0.26079;
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Multi-Level Single Linkage

» f € C?, with local minima in the interior of D, and the distance
between these minima is bounded away from zero.

» L is strictly descent and converges to a minimum (not a stationary
point).

Fe = %\/r (1 + g) vol (D) U'(l)jka 1)

If . — 0, all local minima will be found almost surely.
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Multi-Level Single Linkage

» f € C?, with local minima in the interior of D, and the distance
between these minima is bounded away from zero.

» L is strictly descent and converges to a minimum (not a stationary
point).

Fe = %\/r (1 + g) vol (D) U'(l)jka 1)

Theorem
If . — 0, all local minima will be found almost surely.

If r is defined by (1) with o > 4, even if the sampling continues
forever, the total number of local searches started is finite almost surely.
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BAMLM

MLSL: (S2)—~(S4)
X e S

(S2) Ix € Sk with
[[1X = x|| < r¢ and f(x) < f(X)]
(S3) X has not started a local
optimization run

(S4) X is at least . from 0D and v
from known local minima
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BAMLM

MLSL: (S2)—(S4)
X e S

(S1) Px € Ly with

[IIX = x|| < rx and f(x) < f(X)]
(S2) Ix € Sk with

[II%X — x|| < r¢ and f(x) < f(X)]
(S3) X has not started a local

optimization run

(S4) X is at least . from 0D and v
from known local minima

BAMLM: (S1)—(S4), (L1)-(L6)
xe Ly
(L1) ﬂX € Ly
[II%x = x|l < r¢ and f(x) < f(X)]
(L2) Px € Sk with
[IIX — x|l < rx and f(x) < f(X)]
(L3) X has not started a local
optimization run
(L4) X is at least u from 0D and v
from known local minima
(L5) X is not in an active local
optimization run and has not
been ruled stationary
(L6) drk-descent path in H, from
some x € Sy satisfying (52-S4)
to X
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BAMLM

Iteration: 37; r_k: 0.589
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BAMLM

Iteration: 39; r_k: 0.560
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BAMLM

Iteration: 42; r_k: 0.525
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BAMLM

Iteration: 43; r_k: 0.515
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BAMLM

Iteration: 44; r_k: 0.497
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BAMLM

Iteration: 45; r_k: 0.480
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BAMLM
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Iteration: 95; r_k: 0.257
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Iteration: 96; r_k: 0.256
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Iteration: 97; r_k: 0.255
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BAMLM

Iteration: 98; r_k: 0.255
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BAMLM

Iteration: 99; r_k: 0.254
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.
Properties of the local optimization method

Necessary:
» Honors a starting point
» Honors bound constraints
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N
Properties of the local optimization method

Necessary:
» Honors a starting point

» Honors bound constraints

ORBIT satisfies these [Wild, Regis, Shoemaker, SIAM-JOSC, 2008]
BOBY QA satisfies these [Powell, 2009]

Possibly beneficial:

» Can return multiple points of interest

v

Reports solution quality/confidence at every iteration

v

Can avoid certain regions in the domain

» Uses a history of past evaluations of f

v

Uses additional points mid-run

11 of 25



AAMLM

Algorithm 3: AAMLM

Give each worker a point to evaluate

for k=1,2,... do

Receive from (longest waiting) worker w that has evaluated f
Update Hy and ry

if point evaluated by w is from an active run then

if Run is complete then
| Update X}, and mark points inactive

else
| Add the next point in its localopt run (not in H) to Q.
Start run(s) at all point(s) satisfying (S1)—-(S4), (L1)-(L6)
| Add the subsequent point (not in ) from each run to Q;
Merge runs in Q; with candidate minima within 2 of each other
Give w a point at which to evaluate f, either from Q; or R




BAMLM

MLSL: (S2)-(S4)
X € Sk

(S1) #x € Ly with

[I%X — x|| < re and f(x) < f(X)]
(S2) Ix € Sk with

[I%X — x|| < rx and f(x) < f(X)]
(S3) X has not started a local

optimization run

(S4) X is at least u from 0D and v
from known local minima

BAMLM: (S1)-(S4), (L1)—(L6)
X e Ly
(L1) ﬂX € Ly
1% = x|l < re and f(x) < f(X)]
(L2) #x € Sk with
[I%x = x|l < re and f(x) < f(X)]
(L3) X has not started a local
optimization run

(L4) % is at least u from 0D and v
from known local minima

(L5) %X is not in an active local
optimization run and has not
been ruled stationary

(L6) 3Ire-descent path in Hy from

some x € Sy satisfying (52-S4)
to X



AAMLM Theory

Given the same assumptions as MLSL, AAMLM will start a finite
number of local optimization runs with probability 1.
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Assumption

There exists Ky < oo so that for any Ky consecutive iterations, there is
a positive (bounded away from zero) probability of evaluating a point
from the sample stream and each existing local optimization run.
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AAMLM Theory

Theorem

Given the same assumptions as MLSL, AAMLM will start a finite
number of local optimization runs with probability 1.

Assumption

There exists Ky < oo so that for any Ky consecutive iterations, there is
a positive (bounded away from zero) probability of evaluating a point
from the sample stream and each existing local optimization run.

Theorem

Each x* € X* will almost surely be either identified in a finite number of
evaluations or have a single local optimization run that is converging
asymptotically to it.

14 of 25



Measuring Performance

GLODS Global & local optimization using direct search [Custédio, Madeira
(JOGO, 2014)]
Direct Serial DIRECT [D. Finkel’s MATLAB code]
pVTDirect Parallel DIRECT [He, Watson, Sosonkina (TOMS, 2009)]
Random Uniform sampling over domain (as a baseline)

BAMLM

» Concurrency: 4
» Local optimization method
» ORBIT [wild, Regis, & Shoemaker (SIAM JOSC, 2008)]

» BOBYQA [Powell, 2009]
> Initial sample size: 10n

» Each method evaluates Direct’s 2n + 1 initial points.
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Measuring Performance

Notation:

Let X* be the set of all local minima of f.
Let 7]y be the ith smallest value {f(x*)|x* € X*}.

Let x(*,.) be the element of X* corresponding to the value f(’f)

The global minimum has been found at a level 7 > 0 at batch k if an
algorithm it has found a point X satisfying:

F(2) — 1y < (1=7) (FOo) = 7).

where Xxj is the starting point for problem p.
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Measuring Performance

Notation:

Let X* be the set of all local minima of f.
Let 7]y be the ith smallest value {f(x*)|x* € X*}.
Let x(*,.) be the element of X* corresponding to the value f(’f)

The j best local minima have been found at a level 7 > 0 at batch k if:

HX(*l)v e ,x&,l)}ﬂ{x(*,) : 3x € Hy with HX_X(*") < rn(T)H =j-1
&

{xpx f 0 ) 3x e miowitn [|x x| < ()} 25—+ 1,

where j and j are the smallest and largest integers such that

n/Tvol(D)I(5+1)
e

fUif) =15 = f&f) and where r,(T) =

o 16 of 25



Problems considered

GKLS problem generator [Gaviano et al., “Algorithm 829” (TOMS, 2003)]

v

600 synthetic problems with known local minima

v

10 local minima in the unit cube with a unique global minimum

v

100 problems for each dimension

v

5 replications (different seeds) for each problem

5000 evaluations

v



Data Profiles
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Data Profiles
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Data Profiles
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Latin hypercube sampling
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BAMLM with LHS

Critical distance for uniform sampling:

olog kN\ /"
kN

re— 12 (r(l + g)vol (D)

Critical distance for Latin hypercube sampling:

oN™1log k\ V"
—> (2)

_ -1/ n
k=T (F(1+2)voI(D) p
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BAMLM with LHS

Critical distance for uniform sampling:

log kN /"
Fe=m L2 (I‘(l + g)vol (D) &>

kN

Critical distance for Latin hypercube sampling:

(2)

oN™1log k\ V"
k

ne=m1/? (F(l + g)vol (D)

Theorem

If ry is defined by (2) with o > 4, even if the sampling continues
forever, the total number of local runs started by BAMLM (or AAMLM)
is finite almost surely.
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Does LHS help?

Problem setup:
» 10 different GKLS problems
5 different seeds

v

v
S|
Il

» Same starting LHS sample of 10n points (except for uniform)

v

Same (uniform) ry value
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Within 1/ % of 5 best minima, n =6
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Within 1/ % of 5 best minima, n =3
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Data Profiles
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N
Data Profiles

f(x) = fiy < (1— 107 )(f(xo)— (1))
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N
Data Profiles

F(x) — 75y < (1-107) (F() = £3))
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ol LHS, N=1 i
MIER | -LHS N=10
0.7 b
0.6 b
S o5 1
=
04t 4
0.3 4
0.2 b
01 1
0 1 1 1 1 1
1 2 4 64 128 256
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Closing Remarks

» Concurrent function evaluations can locate multiple minima while
efficiently finding the global minimum.
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Closing Remarks

» Concurrent function evaluations can locate multiple minima while
efficiently finding the global minimum.

» Latin hypercube sampling appears to help find more minima in
higher-dimensional problems.

Questions:
» Finding (or designing) the best local solver for our framework?

» Best way to process the queue?



AAMLM

Algorithm 3: AAMLM

Give each worker a point to evaluate

for k=1,2,... do

Receive from (longest waiting) worker w that has evaluated f
Update H, and ri

if point evaluated by w is from an active run then

if Run is complete then
| Update X}, and mark points inactive

else
| Add the next point in its localopt run (not in H) to Q;
Start run(s) at all point(s) satisfying (S1)—-(S4), (L1)—(L6)
| Add the subsequent point (not in #) from each run to Q;
Merge runs in Q; with candidate minima within 2v of each other
Give w a point at which to evaluate f, either from Q; or R




